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Abstract

Planar embedding with minimal area of graphs on an integer grid is one of the major
issues in VLSI. Valiant IV] gave a-. algorithm to construct a planar embedding for trees in
linear area; he also proved that there are planar graphs that require quadratic area.

We give an algorithm to embed outerplanar graphs in linear area. We extend this
algorithm to work for for every planar graph that has the following property: for every
vertex there exists a path of length less than K to the exterior face, where K is a constant.

Finally, finding & minimal embedding area is shown to be N P-completc for forests,
and hence for more general types of graphs.
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1. Introduction

§1 Introduction

VLSI design motivates the following class of problems: given a graph, map its vertices

onto a plane and its edges onto paths in that plane between the corresponding mapped
vertices. Normally there are some restrictions that the mappings must obey, such as a
minimum distance between mapped vertices. The maps give a layout, and the problem is
to find a layout with a small cost. The mapping restrictions and the cost function together

specify a particular member of the class of layout problems.

Embedding of graphs has been extensively studied during the last few years [L, V, FP,

BK, CS, RI. In this paper we consider the layout problem when the layouts arc rectilinear
embeddings without crossovers and the cost is the area of a box bounding the layout.

Definition: Let the plane have a Cartesian coordinate system. Call those points with
integer coordinates grid points, and the horizontal and vertical line segmcnts connecting
those points grid edges. A graph layout is called a rectilinear embedding if the vertices are
mapped to grid points and the edges are mapped onto a path constrained to follow grid
edges. It is called a rectilinear embedding without crossovers if mapped edges touch only
at mapped vertices upon which both edges are incident. A layout without crossovers is a
planar embedding.

Note that a graph has a rectilinear embedding only if the degree or all its vertices is

4 or less. Higher degree vertices can be simulated by a group of [logd] connected vertices,
each of degree at most 4. Because the number of edges in a planar graph is bounded by
a linear function of the number of vertices, the simulation will not increase the number
of vertices by more than a constant factor. Therefore, we restrict ourselves to graphs of

degree at most 4.

Definition: The bounding box area of rectilinear embedding is

(Imax - Xmin + 1) x (Ymaz - hnmn + ),

where Z,, is the maximum z-coordinate of a mapped vertex and y!ncz, Zmicn, and y,m,,
are defined similarly.

In this paper "area" will mean "bounding box area" unless otherwise specified. The
various notions of graph theory used are defined in the Appendix.

In [V], Valiant looked at the layout problem for rectilinear embeddings (both with and
without crossovers), using the bounding box area cost. lie proved that a tree of vertices
with maximum degree 4 can be laid out without crossovers in an area that is linear in

the number of edges (or vertices). lie also proved that there are planar graphs requiring

quadratic area for such embeddings.

Between trees and planar graphs in complexity lie the outerplanar graphs (those whose
vertices can all be put on the exterior face in a planar drawing). Leiserson has shown that
outerplanar graphs can be laid out in linear area if crossovers are allowed 11,1. We shall
now show that the same is true even without crossovers. llong and Rosenberg [tll) studied

graphs that are "almost binary trees". The constructions they used in their paper lead to



2. Layout or Outerplanar Craphs

a different planar embedding of outerplanar graphs, and the generalization to other types
of graphs does not preserve the planarity of the embedding. With our construction, the
following generalization is possible: a graph can be embedded wil hout crossovers in a linear
area if it can be reduced to an outerplanar graph in a number of steps which does not
depend on the size of the graph. A reduction step consists of (a) triangulating the graph
by adding edges to its interior, and (b) taking the dual of the resulting graph (putting
the new vertices inside the old faces). This will be made more precise later on.

The embeddings we obtain, and those obtained in the past, require an area that is
a function of the number of vertices. This suggests tile question of whether an optimal
embedding is achievable. We shall prove that finding an optimal embedding for a forest is
N P-complete.

In Section 2 we describe the embedding of outerplanar graphs. In Section 3 we
generalize the family of graphs that are embeddable in linear area. Tlme embedding of this
family is obtained by recursive use of the embedding of outerplanar graphs. In Section 4
we prove that embedding in a minimal area is NP-complete.

§2 Layout or Outerplanar Craphs

Only connected graphs need be considered in layout problems: if there are a number
of separate components, they can be joined together with dummy edges which can be
removed from the final layout. There may be better layouts for an unconnected graph, but
this method is good enough to get a linear area bound, since the graph remains planar and
the number of vertices stays the same. Therefore, we consider only connected graphs in
this paper. Testing whether a graph is planar or not can be done in linear time [iT], as can
testing a graph for outerplanarity [13,M]. Finding the planar and outerplanar embcddings of
the corresponding graphs can also be fouiid in linear time !W,B]. Because we are considering
only planar graphs, we will assume that the graph is always given with its planar embedding.

A triangulation of a planar graph is a maximal planar graph obtained by the addition
of a maximal number of edges that do not cross. A triangulation of an outerplanar graph
is a graph obtained from an outerplanar one by the addition of a maximal number of edges
on the internal side of the exterior face.

Valiant [VI gives an algorithm to find a linear area embedding of a tree. Our
embedding of outerplanar graphs is based on this result, with the only exception that we
also need to maintain the orientation of the tree. That is, the order of the edges at every
branching of the embedded tree must be the same as in the original tree, and thus the
layout is just a rectilinear deformation of the given tree on the grid.

Theorem 1. There exists a linear embedding of a tree that is orientation preserving.

Proof: The proof is just adaptation of Valiant's proof [V80], showing that the embedding
is achievable preserving orientation. As in Valiant, we will assume that all the vertices are
of degree at most 4.

Valiant's construction is a divide-and-conquer one where two approximately equal-
sized parts are recursively embedded, and then joined by lead-out paths from the two
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Figure 2.1 Joining subgraphs with lead-out paths
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Figure 2.2 Local deformation required for lead-out path

appropriate vertices (see Fig. 2.1). The "leading out" requires that the grid be augmented
with additional horizontal and vertical lines along the lead-out paths (roughly speaking).
To preserve the orientation, it is enough to be consistent while sequencing the edges leaving
a vertex. Specifically, before looking for a leading out path we may need to make a local
change among the edges already leaving the vertex.

In the case shown in Fig. 2.2(a), the edge leaving P to Q goes between the edges to b
and d. Therefore, the embedding in Fig. 2.2(b) needs to be deformed Lo that shown in Fig.
2.2(c), so that there is a place for the edge leading to Q to be connected. The lead-out path
starts from this point and goes to the boundary of the embedding, without crossing other
edges. To accomplish the deformation at P, it suffices to insert an additional horizontal and
vertical grid line, as shown in Fig. 2.2(d). Whenever the lead-out path changes direction,
another grid line needs to be inserted to accomodate it.

Valiant's linearity proof is based on a logarithmic bound on the number of direction
changes required for any lead-out path. Examination of his proof of that bound reveals that
it still holds even ilf we specify which side we lead out on. The base case changes slightly,
but it still follows that we can find an orientation preserving and linear area embedding of
a tree. m

The idea behind the embedding of outerplanar graphs is that the dual of the trian-
gulated graph is a tree of degree 3. Therefore, we can embed it in linear area, and from it
obtain the embedding of the original outerplanar graph.

Theorem 2. Any outerplanar graph with n vertices and degree at most 4 has a planar
rectilinear embedding a bounding box area < cn, for some constant c.



2. Layout of Outerplanar Graphs

13 '1 9 -

12 10

Figure 2.5 Triangulation of C to form TRI(G)
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Figure 2.4 Taking the dual of TRI(G) to form T

Proof: Suppose we are given an outerplanar graph G with n vertices of degree at most
4. The outerplanar graph G can be drawn on a plane with all the vertices on the exterior

face, with the edges being some subset of a triangulation or that race.

Let TRI(G) be the outerplanar graph obtained from G by triangulation. In Fig. 2.3,
the dummy edges added to G to construct TRI(G) are shown as broken lines. The resulting
graph may have vertices with degree greater than 4, but this will not affect our construction
because the dummy edges will not appear in the final layout.

Now construct the dual graph T of TRI(G) as follows. Insert a vertex of T at the
center of each triangle or TRI(G). Also, add one vertex for each edge on TRI(G)'s exterior
race; locate these vertices in the exterior face (just "outside" tile corresponding edges).
The edges of T join those vertices separated by one edge of TI(G) (see Fig. 2.4). The
outerplanarity of TRI(G) ensures that the dual graph T is, in fact, a tree; if it had a
cycle, then TRI(G) would have a vertex completely surrounded by a ring of other vertices,
violating outerplanarity.

There is a one-one correspondence between the edges of T and the edges of TRI(G).
Also, TRI(G) has at most 2n - 3 edges (a property of outerplanar graphs), so the number
of edges in 7' is bounded by a linear function in n.
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Figure 2.5 T and the regions betwecn adjacent leaves

Except for the leaves, all of T's vertices have degree 3, so the conditions of Valiant's
Theorem 5 [VJ and our Theorem 1 are satisflcd. Ilcnce there is some constant k such that

we can always find a rectilinear embedding of T having an area < kn, with the additional
property that tihe tree's orientation is preserved.

To leave enough space in the embedding to run the edges or tie original graph, expand
the grid 9 times, horizontally and vertically.

The layout of G can now be done using T as a guide. One can traverse the exterior
face of a tree embedded in a plane by following along the edges, always keeping on one side
or them. The exterior face or T in Fig. 2.5 is a, e, b, c, d, h, . .. , f, e, d, c, a. Two leaves are
adjacent if there is no intervening leaf between thecm in some traversal or thle exterior race.
In the embedding for T there is a region between two adjacent leaves which is bounded
by: (i) the edges followed in the traversal between thde leaves; (ii) attached to each leaf,

a'4 unit line segment perpendicular to the lear's edge and on the side closer to the other

.5'A
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Figure 2.6 A vertex in TRI(G)
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Figure 2.7 Allocating tracks for edge embedding

leaf; (iii) line segments parallel to the edges of (i), 4 units away on the side that was being
traversed, and just long enough to join together. Fig. 2.5 shows these regions; call the set

We now claim that for each vertex of TRI(g) there is a corresponding region in R,
aiid that no two vertices correspond to tLe same region in R. Consider Fig. 2.6 where a
general vertex P of TRI(G) is shown (TRI(G) drawn with darker lines, 7T with lighter ones).
P must be on the exterior face of TRI(G) because of outerplanarity, and it must have at
least two exterior edges incident on it, due to the triangulation. Thus, the method for
taking the dual implies that T has two leaves, a and b, corresponding to the exterior edges
of TRI(G). There are also edges of T joining any of the other faces around P, so that
a and b are adjacent leaves in T. Furthermore, P is the only vertex of TRI(G) between a
and b on P's side of T; otherwise there would be more than one edge of TRI(G) crossing
an edge in the path a...b. Note that all of the edges from P cross exactly one of the edges
in the path a.. .b, and no more edges thereafter.

Now the embedding of G proceeds by placing each vertex of TRI(G) somewhc re in
the middle of the corresponding region in R. Then we embed the edges of G, a subset of
the edges of TRI(C) such that at most 4 edges are connected to each vertex. Since there
are 4 "tracks" (sequences of connected grid line segments) in each region going parallel to
the tree edges, there is enough room for the 4 edges of C to go along until the tree edge
that it must cross is reached. Consider Fig. 2.7, where edges from P to A, D, C, and D are
to be embedded. To the right of P, the regions that must.be entered are encountered in the
order C, B, A. The edge to C will be embedded along the track closest to the tree edges,
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Figure 2.8 Layout of G over T

with the edge to B along the next, etc. The same track allocation procedure is repeated to
the left of P.

The actual crossing into an adjacent region can then be accomplished anywhere along
the boundary between two regions (with the possible exception or places near the corners or
ncar the embedded vertices or G: the expansion ensures that thcre will still be an allowable
crossing place). The same argument shows that the adjacent region will also have a track
allocated for the edge being embedded, and that the way to that track will be clear. Thus,
C can be embedded over T without crossovers.

As a side remark, note that the layout for G has preserved its orientation. In Fig. 2.7,1

the regions containing A, B, C, and D are encountered in clockwise order around P, so the
track allocation procedure sequences the edges leaving P In that order. This is the samne
order as in the original C because T was laid out in an orientation- preserving manner.

The solid lines in Fig. 2.8 shows the embedding for the G in Fig. 2.3.

The embedding round for G has'a bounding box wvhose area is <Z cr& for some c,
because it is at most (9ca + 8)(Ob + 8), where a and b are the (dimensions of the emnbedding

-- . -- 4 I
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found for T, and ab < kn. I

§3 Layout of Planar Craphs

We shall extend the embedding method for outerplanar graphs to a broad class of
planar graphs. Valiant [V] proved that there are planar graphs that require quadratic
embedding area. We cannot kive a complete characterization of the planar graphs that
can be embedded in a linear area, but we will describe a family of graphs that can be so
embedded.

The idea behind the construction is to reduce planar graphs to outerplanar graphs
using a method similar to that used in the reduction of outerplanar graphs to trees. The
triangulation method that we used for outerplhnar graphs needs to be extended carefully
to planar graphs. The reason is that the dual graph we obtain from the triangulated one
has to be simpler, in some sense, than the original graph. It is possible to triangulate a tree
in such a way that the dual will not be a tree; if such a triangulation were used it might
not lead to a terminating procedure.

The outerplanar triangulation is defined with respect to a planar embedding of a
planar graph. Note that there is a linear algorithm [W) to find the planar embedding of a
planar graph based on the planarity testing algorithm of flopcroft and Tarjan lIT]. The
facts that sometimes there is more than one embedding, and that outerplanar graphs may
be embedded in a nonouterplanar way, do not affect our results.

3.1 Outerplanar Triangulation of a Tree

We shall describe the outerplanar triangulation of trees of a special form. All the trees
we triangulate will be of this form. The triangulation coincides, for a certain embedding,
with that of the previous section.

Let T be a tree with root r such that r has more than one child, and r's rightmost
child, s, is a leaf. The outerplaner triangulation of a tree is formed by adding edges from
every vertex v (except r and s) to its nearest-ancestor-right-child: NARC(v). NARC(v) is
round by moving from v towards the root until a vertex is found which has a child just to
the right of the one that leads to v: NARC(v) is that just-to-the-right child. Informally,
NARC(v) is the first vertex on the "previous branch" to v in a depth-first traversal or the
tree.

In Fig. 3.1 the new edges added according to this triangulation method are shown as
broken lines. Let TRI(T) denote the triangulation of T. The proof of the following lemma
is immediate.

Len -la 3. 1 ' be a tree. The triangulated graph TRIT) is outerplanar. I

.... . ..
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Figure 3.1 Triangulating a tree

3.2 Outerplanar Triangulation and Dual of a Planar Graph

Let G be a planar graph, and suppose that the consituent 2-connected blocks and
tree blocks have been determined. We would like to triangulate the exterior face so that all
the vertices on the exterior face of the graph will be on the exterior face of the triangulated
graph. Triangulating the interior of a 2-connected block does not change the exterior face,
but triangulating a tree block might. The triangulation of the 2-connected blocks is done
separately from that of the tree blocks.

The interior of a 2-connected block should be triangulated in a way that will ensure
a "simpler" dual graph. The simplicity measure is defined with respect to the width of the
graph.

Definition: Let G be a planar graph. Define the distance (from the exterior face) of a
vertex, say v, to be the length of the minimal path that connects v to a vertex on the
exterior face of G. The distance of a face is defined to be the minimum over all the distances
of its vertices. The vidth of - is the maximum over all the distances of its vertices.

The width of a tree is zero. Similarly the width of an outerplanar graph (with an
outerplanar embedding) is also zero. The width is a function of the embedding of the graph
on the plane; therefore, an outerplanar graph might have width greater than zero, in the
case that its embedding is not outerplanar.

The notion of width is close to the notion of dual escape number defined by Hong
and Rosenberg 1[[R]. However, the width does not increase after triangulation whereas the
dual escape number may increase.

The outerplanar triangulated graph of G is denoted by TRI(G), and is obtained in
the following way:

1. Triangulate the internal region of each 2-connected block by adding a maximal number
of internal edges that do not cross, as follows: first add a maximal number of edges to
vertices of distance zero, then to those of distance one and so forth, level by level.

2. Triangulate a branching tree as follows. Let v be the vertex along the face of a 2-
connected block at which the tree branches; choose v to be the root of the tree. Let u



3.3 Reduction of Planar Graphs 11

be the first vertex to the right of v along the face of the 2-connected block. Such a u
must exist. Consider the edge (u; v) as the rightmost branch of v and triangulate the
tree as described in the previous subsection.

Definition: Let G be a planar graph and TRI(G) be its outerplanar triangulation. The
dual graph, DUAL(TRI(G)), of TRI(G) is obtained by inserting a vertex in each triangle of
TRI(G) and a vertex outside each edge of the outer cycle of it; the edges of DUAL(TRI(G))
connect vertices that are on the two sides of edges of TRI(G).

Observe that the degree of DUAL(TRI(G)) is three, and that it is a planar graph with
a planar embedding. Another fact about DUAL(TRI(G)) is that the only vertices of degree
one are on the exterior face. The dual graph defined in graph theory I1] is different from
the one just defined. In graph theory there is a single vertex on the exterior face, while in
our case there is a vertex outside each edge of the exterior face.

3.3 Reduction of Planar Graphs

The construction used in Section 2 to lay out outerplanar graphs can be used to lay
out any graph over its dual triangulation. This will allow us to embed constant width
planar graphs in linear area.

Lemma 4. Let G be a planar graph but not a tree, with vertices of degree at most 4.
If DUAL(TRI(G)) has an orientation preserving rectilinear embedding without crossovers,
with area < A, then G has an embedding of the same type with area < 81A.

Proof: The proof is similar to the argument used in Theorem 2 to embed an outerplanar
graph, given a linear embedding for its dual tree. Again, there are regions in and around
DUAL(TRI(G)), each of which contains exactly one vertex of TRI(G). And the same
argument shows that every edge of G need only cross one edge of DUAL(TRI(G)). Thus,
since at most 4 edges leave a region, expanding the grid 9 times horizontally and vertically
will allow G to be embedded on top of DUAL(TRI(G)). m

Therefore, a planar graph can be laid out over its dual triangulation, and the latter
graph can be laid out in a similar manner, etc. If this process eventually leads to the
problem of laying out a tree then the whole construction goes through.

Definition: We say that a planar graph G can be reduced to H if there exists a series of
graphs Gl,G2,...,Gk and TI,T 2 ,...,Tk-1 such that:

1. Gi = G, and Gk = H;

2. Tj is the triangulated graph of G;

3. Ci+ is the dual triangulated graph of T.

A reduction step is a triangulation followed by a taking of the dual.
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Figure 3.2 (a) honeycombed graph (b) non-honeycombed graph

Theorem 5. Let G be a planar graph with n vertices and degree at most 4. If G tan be
reduced to a tree in f reduction steps, for some constant f, then G has a planar rectilinear
embedding with area < Kn, for some constant K.

Proof: When f = 0 then C is a tree, and Theorem 1 shows that there is an embedding
of the required type in area < kn for some constant k. Otherwise, let m be the number of
vertices in DUAL(TRI(G)).

Assume by induction that DUAL(TRI(G)) has an embedding with area < Kim, This
is certainly true for the base case. There is a one-one correspondence between the edges of
DUAL(TRI(C)) and the edges of TRI(G) (the triangulation of G); let that number of edges
be e. Now DUAL(TRI(G)) is connected, so m - 1 < e. TRI(G) is planar and has n vertices,
so e < 2n - 3, and hence m < 2n. Finally, Lemma 4 can be used to show that G has an
embedding in area < 2.81 • Kn. The final K will be the result of multiplying f constants
together, and so it will itself be constant. I

Naturally, the above theorem is more interesting if we can state the conditions under
which a planar graph reduces to a tree in a constant number of steps. In the remainder
of this section we show that every planar graph reduces to a tree eventually, and that the
number of reduction steps is proportional to the width of the graph.

Some of the results depend on the fact that the dual triangulated graphs developed
in the above layout procedure have a specific form.

Definition: A honeycombed graph is a planar graph in which every internal race is a simple
cycle and every two faces have at most one edge in common.

Fig. 3.2 illustrates a honeycombed and a non-honeycombed graph. A consequence of
this definition is that a honeycombed graph does not have any internal vertex of degree two.
General honeycombed graphs have the problem that one can have multiple edges between a
pair of vertices. In Fig. 3.2(a), vertices v and u are common to two interior races; therefore,
the edge (u, v) can be added to either of those faces without affecting planarity. The graphs
we use later on are honeycombed of degree 3. The following theorem proves that the above
case cannot happen in honeycombed graphs of degree 3.

Theorem 6. Let G be a honeycombed graph of degree S. Any two non-adjacent vertices V

iscommon to at most one internal face. Every pair of adjacent vertices are common only
to the two faces on either side of the edge between them.
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Figure 9.3 Vertices common to 3 internal faces

Proof: By definition, every internal face of a honeycombed graph is a cycle. Since the
degree of every vertex is at most 3, if two cycles have a common vertex then one of the
edges leaving that vertex is also common to the two cycles.

This fact implies that if two non-adjacent vertices are common to two cycles, then
there are at least two edges common to them; this contradicts the assumption that the
graph is honeycombed.

The case that is left is where two adjacent vertices are common to several internal
races. Fig. 3.3 shows the only way that two vertices, u and v, can share 3 internal faces
in a graph of degree 3. It can be seen that that graph is not honeycombed because races
f, and f2 have at least two edges in common. Therefore, two adjacent vertices cannot be
common to 3 or more internal faces in a honeycombed graph of degree 3. |

We want to be able to triangulate a face by adding edges from any given vertex to all
the non-adjacent vertices of that face, but this might create multiple edges between a pair
of vertices if they share more than one face. One of our later proofs requires that there
be no multiple edges; a corollary of Theorem 6 is that this cannot happen in honeycombed
graphs of degree 3.

Corollary 7. Let G be a honeycombed graph of degree 3. Let F be any internal face in
G and v be an arbitrary vertez on F. Then F can be triangulated with edges leaving v,
without creating multiple edges.

Proof: Every face in G is a simple cycle. Theorem 6 implies that a vertex is adjacent
to exactly' two vertices along the face to which it belongs. Moreover, an edge between a
vertex and any non-adjacent vertex on the face can be drawn only on the inside the face F.
Therefore, we can triangulate F with edges leaving any of its vertices without producing
multiple edges in the graph. I

The following lemma justifies the way we defined the triangulation. In honeycombed
graphs or degree 3, the triangulation does not produce faces of maximim distance if the
original graph does not have any.
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Lemma 8. Let G be a honeycombed graph of degree 9, and let I be the maximum distance
in G. The triangulated graph TR1G) contains a face of distance 1 only if G contains such
a face.

Proof: If I = 0, then obviously all the vertices of TRI(G) are of distance zero, as in G. So
assume that I > 0 and that every face contains a vertex of distance less than I.

The graph G is a honeycombed graph, so every face is a simple cycle. Thus, every
cycle contains a vertex of distance less than 1. By Corollary 7 we can use that vertex to
triangulate the face. This triangulation would produce triangles, each of which contains
a vertex of distance less than 1. But all the faces in the triangulated graph TRI(G) are
triangles. Thus, we have proved that all the faces in TRI(G) contain vertices of distance
less than 1, which implies that none or its faces contain only vertices of distance 1. 3

Lemma 9. Let G be a honeycombed graph of degree S. The width of TRJ(G) is not
greater than the width of G.

Proof: By Lemma 3, the triangulation of the tree blocks does not change the width of
the graph. On the other hand, the width of a 2-connected block can only be reduced by
triangulation. I

The following property of dual graphs enables us to use these results about honeycombed
graphs.

Lemma 10. Let G be a planar graph. DUAL(TRI(G)) is a honeycombed graph of degree
8.

Proof: Let TRI(G) be the triangulated graph of G used to produce DUAL(TRI(G)). It is
clear that DUAL(TRI(G)) is of degree 3. Also, every internal vertex of DUAL(TRI(G)) is
of degree 3, because it is placed in the center of a triangle in TRI(G). This proves that
every internal face of DUAL(TRI(G)) is a simple cycle: the degree 3 restriction eliminates
the possibility of tree leavs on the face. A13o, for there to be a non-simple cycle, there
would have to be vertices of degree at least 4.

It remains to show that every two internal faces have at most one edge in common.
We will prove that each internal face is produced by a single vertex of TRI(G); that is,
every edge along the face corresponds to an edge leaving that vertex.

Consider a general internal cycle of DUAL(TRI(G)), shown in Fig. 3.4. Every vertex
of DUAL(TRI(G)) is a center of a triangle of TRI(G). Therefore,- the edges (uk,uj) and
(ul, u 2) are crossed by two edges that leave the same vertex, say r. The edge (u 2 ,u3 ) will
also be crossed by an edge leaving r. Continuing, one finds that every edge in the cycle
is crossed by a vertex leaving r. By construction, every edge of DUAL(TRI(G)) crosses
exactly one edge of TRI(G). Thus, there can be exactly one vertex of TRI(G) inside the
face, which proves our claim.

So, in every face of DUAL(TRI(G)) there is one vertex of TRf(G), with edges leaving it
and crossing all the edges along the face. Since the graph is planar and every two vertices
are connected by at most one edge, every two internal cycles have at most one edge in
common. This completes the proof that DUAL(TIzi(G)) is a honeycombed graph. of degree
3. l
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Figure 8.4 Internal cycle of DUAL(TRI(G))

S. /

Figure 8.5 Whecl in TRI(C) (solid lines)
and the corresponding face in DUAL(TRI(G)) (broken lines)

The proof of the following fact is similar to part of the proof of Lemma 10.

Lemma 11. Let G be a planar graph. Every internal/face of DUAL(TR1(G)) is a dual of
a "wheel'J subgraph of TJU(C)' ee Fig. 8.5). 1

We want to show that by triangulating and constructing the dual triangulated graph
we reduce the width of the graph, so that the new graph is "simpler", and after a finite
number of steps we will reach a graph of width zero. But the situation is not quite so-
simple: one application of duality and triangulation is not enough to reduce the width or
the graph. We shall prove that two consecutive applications are enough. First, here is a
lemma used in the proof.

Lemma 12. Let T be a triangulated planar graph and T, be TR4DUAL(T)). Let v be a
non-leaf vertex in T1 and F" be the corresponding triangle in T. The distLance of v in T, is
equal to the distance of F in T..

Proof: The definition of dual implies that every triangle of distance zero in T corresponds
to a vertex of distance zero in DUAL(T), and thus also in TRII(DUAL(T)). The rest of the
proof is by induction. Assume that the claim holds for all triangles of distance k > 0 and
let F be a triangle in T of distance k + 1, and vi be the corresponding vertex in T1.

Because F is of distance * + 1, one of its vertices, smy u, is of distance k + 1 in T.
This vertex has a neighboring vertex (not on F).of distance k; moreover, these vertices are
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on a triangle of aistance k in T. Let v' be.the vertex corresponds to this triangle in T1 . By
the inductive assumption, the distance of v' in T, is k.

By Lemma 11, v and v' are on the same face in DUAL(T). Therefore, there exists
a triangulation or the face corresponding to u in which the distance of v becomes at most
k + 1, which proves the lemma. I

Theorem 13. Let T be a triangulated planar graph. Let

Ti = TRADUAL(T))
T2 = TRIDUAL(Ti)).

If the width of T is positive, then the width of T2 is less than the width of T.

Proof: Let M be the set of vertices of T with maximal distance. Consider two cases:

Case A: Every triangle of T contains a vertex not in M. In this case the distance of every
triangle, by definition, is less than the maximum distance in T. Thus, the previous lemma
implies that the width of T, is less than that of T. The width or T2 cannot be greater than
that of TI; thus the theorem is proved.

Case B: There exist triangles in T with all their vertices in M. By the previous lemma it
is clear that the width of Tj equals the width of T. Let M, be the set of vertices having
the maximum distance in T1 . We shall prove that Case B could not hold for T1 .

Assume to the contrary that T, contains a triangle with all its vertices in Mt. By
Lemma 8, DUAL(T 1 ) contains a face all of whose vertices have the maximum distance.
A face in a dual triangulated graph is derived from a wheel in the triangulated graph, as
explained in Lemma 11. Thus, T, contains such a wheel, made up of triangles with distance
equal to the maximum distance (width) of TI; but this is impossible because the planarity
of T1 implies that the distance of the center of the wheel is greater than the distance of
the face of the wheel. Therefore, not all the vertices of these triangles have the maximum
distance. This proves that Case B does not hold for TI, which implies, by Case A, that the
width of T2 is smaller than that of T1 . This completes the proof of the theorem. I

Theorem 13 implies that the reduction decreases the width, or more precisely:

Theorem 14. Every planar graph can be reduced to a tree in a number of steps propor-
tional to its width.

Proof: Let G be a planar graph. Let w be the width of G, and k = 2w + 1. Define Gt
to be 0, and for 1 < i < k define T = TRI(G%) and GC+1 = DUAL(T). Choose H to be
Gk.

By Theorem 13, the width of T2i+l is smaller than that of T2,- 1 . Therefore, even-
tually there will be a graph of width zero. Lemma 3 implies that further reduction steps
leave it with width zero. Thus, H is a tree, which proves the theorem. |
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So finally, we come to the main result or this section.

Theorem 15. If G is a member of a class of planar graphs of degree 4 whose width does
not depend on the size of the graph, then G has a linear area rectilinear embedding without
crossovers.

Proof: Let w be the width of G.. Theorem 14 shows that at most 2w + 1 reduction steps
suffice to reduce G to a tree, so the conditions of Theorem 5 are satisfied. I

§4 V/P-Completeness or Optimal Forest Embedding

Given a forest and an integer A, the forest layout problem is to find whether or not
there is a planar rectilinear embedding with area less than or equal to A. In this section we
will show that the forest layout problem is Jg P-complete. This will be done by transforming
the 3-partition problem to it.

In the 3-partition problem there is a set of integers X1, .. ., Z3,, such that

3rn

i = mB

and B/4 < zi < B/2 for I < i < 3m. The question is whether the set can be partitioned
into m disjoint sets such that each set sums to B. This problem is known to be ANP-complete(Gil.

Consider the tree in Fig. 4.1. Call it the frame tree. There are vertices at every grid
point except for m = 2n holes of size B. (The case for m odd will be considered later; it
is just a trivial modification.)

Lemma 16. The only embedding of the frame tree with a bounding box area of

(4n + 2B + 3) x (2B + 3)

or less and leaving mB free grid points is the embedding given in Fig. 4.1.

Proof: The tree has (4n + 2B + 3) X (213 + 3) - mi vertices, so the embedding is required
to use every grid point for a vertex or else leave it free. This means that no edge of the
tree can be stretched to a paih of 2 units, for that would take up a grid point in the middle
that is not used for embedding a graph vertex.

The vertical branches of the frame tree cannot be bent because the degree 4 vertices
would require an edge stretch or a permutation of the order or the branches, and such
a bending would run into the corner areas. The corner areas can only be bent inwards
(because of the degree 3 nodes), and there is no room to bend inwards. There are some
lines that can be bent outwards butthis just makes the bounding box bigger.

Therefore, the given layout is the only one possible. I
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n slots B points

L.holes9

Figure 4.1 Frame Tree for n = 2, B = 5

Theorem 17. The forest layout problem is .NP-complete.

Proof: Given an instance of the 3-partition problem, construct the frame tree and add 3m

other pieces, unconnected to that tree: for each zi there is a piece consisting of z vertices

joined into a line by zi - 1 edges. If m is odd, use the frame graph for the next higher even

number and fill in one of the vertical 'holes. Now we claim that the 3-partition problem

instance has a solution iff there is an embedding of this forest with a bounding box area of

(4n + 2B + 2) X (2B + 3). For, by the lemma, ir there is such an embedding then it must

be as shown in Fig. 4.1 with the extra pieces filling up the holes. Since all the grid points

are to be used, this gives a solution to the 3-partition problem, because the size restrictions

on the z's imply that there must be exactly three pieces in each hole. Conversely, given a

solution to the 3-partition problem, a suitable embedding can be found by filling the holes

in the frame tree with the pieces corresponding to the partitioned sets.

The given transformation can clearly be done in polynomial time. Also, the layout

problem is in gP because one can simply guess a mapping of all the vertices to grid points

and then verify Ihat the edges can all be put along the connecLing lines. Therefore, the

forest layout problem is .P-complete. *

"7%
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Appendix

This appendix presents the basic graph theory definitions used in the paper. Some of
the standard definitions are not given here; they may be found in 111.

A graph G - (V, E) consists of a set V of vertices and a set E of edges. The degree of
a vertex is the number of edges incident on it. The degree of a grpah is the maximum over
the degrees of its vertices. A planar graph is a graph that can be embedded in the plane
such that no two edges intersect. In the paper we consider only graphs that are planar,
and therefore we assume that the graph is always given with its embedding on the plane.

A path in a graph is a sequence viel, v2,...,ek, Vk, with vicV,ejcE, and e1 = e, for
i 76 j. A cycle is a closed path. A simple cycle is a path in which v1 = Vk, but otherwise
vi , vi when i 34 j.

Let F C V be a subset of vertices. We say that F forms a face of G (of the embedding
of G) if:

i. We can draw a closed line touching all of the vertices in F, but not cutting across any
edges, so that all of the rest of the graph is embedded on one side of the line (see Fig.
A.1);

ii. F is maximal: i.e., for every F' D F, F' does not satisfy (i).

Note that a face is bounded by a simple cycle with tree branches attached to it.

An outerplanar graph is a planar graph, all of whose vertices form a single face.
Observe that every tree is an outerplanar graph, because all of its vertices are on one face,
as shown in Fig. A.2.

Let C be a connected planar graph. Choose a face of G and call it an exterior race.
All the rest of the graph is embedded inside that face. We choose the unbounded region
implied by the embedding, such as 13 in Fig. A.1, to be the exterior face.

If the graph is 2-connected, then the exterior face is a cycle called the exterior cycle
of the graph.

The exterior face of the graph induces a decomposition of the graph into blocks; each
block being either a 2-connected block or a tree block. A 2-connected block consists of a
cycle along its exterior face of vertices from the exterior face of C and all the subgraph

-
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Figire A.2 A tree is outerplanar

Figure A.3 The blocks of a planar graph

embedded inside that cycle. A tree block is a 1-connected subgraph, all of whose vertices
are on the exterior face. If a graph is connected and contains a cycle, then all the tree
blocks branch from the exterior cycle of 2-connected blocks. (See Fig. A.3 for an example
of these definitions.)

A maximal planar (respectively outerplanar) graph is one to which no edge can be
added without losing planarity (respectively, outerplanarity).

F a
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